Tools for Cleaning Up Illinois Diesel: Technology, Funding & Collaboration

Hydraulic Hybrids

Cost-Effective Clean Urban Vehicles

Matthew Brusstar

Senior Technical Advisor
Office of Transportation and Air Quality
U.S. Environmental Protection Agency

May 2, 2006

What is a Hybrid?

- A hybrid drivetrain is simply another kind of transmission
 - Manual, automatic or <u>hybrid</u>
 - It is one that can recover, store and reuse power either electrically or <u>hydraulically</u>.
- A hybrid vehicle, in addition to its main engine, has a drive train that contains:
 - An energy storage system
 - A special drive system to convert the stored energy to motive power

Hydraulic Hybrids

- Store energy in hydraulic accumulators
- Use hydraulic pump-motors

Electric Hybrids

- Store energy in batteries and/or ultra-capacitors
- Use electric generator-motors

Why Hydraulic Hybrids?

- Highest possible fuel economy
- Lowest incremental cost
 - Shortest payback to owner
 - Highest lifetime-savings
- Ultra-low emissions
- Enables unique high efficiency engines
- Greater reductions in greenhouse gases
- Greater reductions in imported oil

Vehicle technologies that deliver real-world <u>results</u> cost-effectively!

Ways to Increase Vehicle Fuel Economy...

- 1. Capture and re-use energy lost to friction braking
 - ✓ Regenerative Braking

- 2. Improve average efficiency of the engine / drivetrain
 - ✓ Shutoff engine at idle

✓ Operate engine at "sweet" spot

✓ Shutoff engine at all times when not needed

- 3. Reduce the energy needs at the wheels
 - ✓ Reduce Aerodynamic Drag
 - ✓ Reduce Rolling Resistance

Regenerative Braking

EPA City Cycle Energy Delivered to the Wheels (Baseline- 20000 lbs, vt365)

Hybrids try to recover → this energy

Where
Does the
Energy at
the Wheels
Go?

Electric Hybrids < 25%

Hydraulic Hybrids >70%

31%

Efficiencies While Braking/Accelerating Electrically

Efficiencies While Braking/Accelerating Hydraulically

Hydraulic Components

Integrated Bent-Axis Hydraulic PumpMotors

Last_Run Time= 0.0003 Frame=3

1. Specific Power: ~ 7 kw/kg

2. Specific Cost: \$9/kg

Hydraulic Hybrid Accumulators

1. Charge/discharge cycle efficiency: 95-99%

2. Specific power: High pressure accumulator (with oil that transfers the power/energy) can deliver very high specific power in excess of 5 kw/kg

3. Energy density: >50 kw-sec/gal

4. Specific energy: ~8 kw-sec/kg

5. Specific costs: \$10/kg

Parallel Hydraulic Hybrid Operation

Series Hydraulic Hybrid Operation

Hydraulic Hybrids Efficiency Parallel versus Series

Series hybrid designs enable the next step in hybrid design – big opportunities for:

- More efficient engine operation, and
- Unique, even more cost-effective engines
- Higher fuel economy with less incremental cost

Hybrid Configurations	Vehicle Fuel Economy Improvement
Mild Hybrid (parallel, launch assist with conventional engines)	20-40%
Full Hybrid (series) with conventional engines	60-80%
Future Full Hybrid (series) with advanced engines, improved aerodynamics, and tires	100-120%

This is Just the Beginning... More FE Improvements Coming!

Advanced High Efficiency Engines Enabled by Full Series Hybrids

HCCI - Homogenous Charge Compression Ignition

Diesel efficiency levels from gasoline (Tier2 Bin 2)

Alcohol-Fuel Engines

Cost-effective, high efficiency (Tier2 Bin 2 potential)

Thermal Energy Recovery (alcohol fuel)

Recover energy from the waste exhaust heat

Complete Variable Displacement Engine

 Twin Crank engine to maximize engine efficiency yet have peak power available on-demand

Free Piston Engine

Hydraulic power directly from engine – no crank

Types of Questions You Need to Ask Yourself To "Spec-out" Fleet Hybrids

- What level of emission reduction do you want?
 - Dock/garage air quality: no idle, "silent getaway"
 - On the road: cycle emissions
- How long can you wait for the system to pay for itself?
 - What fuel economy gain do you desire? (mpg)
 - How much can you save on brake maintenance?
- Does your fleet have a duty-cycle that will bring suitable fuel economy gains?
- □ How much weight gain can you tolerate?
- What level of redundancy do you need (limp home)?
- Do you need on-board electricity?

Types of Questions to Ask Hybrid Manufacturers

- What is your "round-trip" wheel-towheel regeneration efficiency?
- □ Do you shut engine off at idle?
- Over what drive cycle was the vehicle tested?
- What is engine efficiency over entire drive cycle?
- What percent is the engine off over drive cycle?

Challenges to Proliferation of Hybrids in Commercial Vehicles

	Assessment of Today's Systems	Expected from Full Series System
1. Fuel Economy Increase	15-40%	60+%
2. Incremental Cost	?	10-15% of base vehicle (high volumes)
3. Payback Period	?	2-3 years

EPA is focusing its efforts on <u>full series</u> "hydraulic" hybrid designs

Growing Interest In <u>Using</u> Hydraulic Hybrids

Interested Groups

- ✓ <u>Users/Fleets</u> Army, refuse industry, Hybrid Truck User's Forum's (HTUF) Hybrid Parcel Delivery WG is now pursuing hydraulic hybrids
- ✓ <u>Manufacturer/Suppliers</u> International, Eaton, Parker-Hannafin, Dana/Permodrive, HybraDrive, Hydraulic Innovations
- ✓ <u>Hydraulic Hybrid Working Group</u> formed through NextEnergy; focusing on industry issues associated with commercializing hydraulic hybrids www.nextenergy.org/industrygroups

Publications

- ✓ 2004 EPA Technical Report focus on the efficiency, cost and payback of hydraulic hybrid technology www.epa.gov/otaq/technology/#tech
- ✓ 2005 SAE Paper Hydraulic versus Electric Hybrid Fuel Economy - Ricardo paper (SAE# 2005-01-1164)

EPA's Full Series Hydraulic Hybrid SUV Demonstration Vehicle

Communicates a Vision of "Production Potential" for SUV's and Light Trucks

- Diesel & 4-WD hydraulic hybrid ("HH") shows 85% fuel economy improvement (130% in city) & better acceleration
- \$2200 incremental cost add for diesel engine and hydraulic hybrid technology means excellent 1-2 year payback for consumer (assumes high volume)

EPA's Full Series Hydraulic Hybrid Urban Delivery Vehicle

Hydraulic Hybrid UPS Package Car Demo Creates Visibility With "Real World" Experience

- 60-70% mpg improvement in city driving
- 2-3 year payback has attracts attention from fleets
- Potential for net Lifetime savings over \$20,000
- Demonstration to accelerate technology transfer to industry & familiarity with technology
- Partners (UPS, Eaton, International Truck, U.S. Army)

New York Times (Feb 10, 2005) – "The Environmental Protection Agency and the United Parcel Service announce a test project today demonstrating a new type of transmission that could save energy and reduce pollution."